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AN INVESTIGATION OF METHODS OF IMPROVING
SUBSONIC PERFORMANCE COF A MANNED
LIFTING ENTRY VEHICLE®

By Bernard Spencer, dJr.
Langley Research Center

SUMMARY

An investigation has been made in the Langley high-speed 7- by 10-foot
tunnel at a Mach number of 0.35 to examine various methods of improving the
landing performance characteristics of blunted-base lifting-body configurations.
The model selected for the study was the HL-10 configuration, considered repre-
sentative of the aforementioned type of vehicle. Most of the modifications
incorporated were made bearing in mind that little or no alteration of the
pertinent entry-configuration design lines should be attempted.

In general, significant increases in the maximum untrimmed lift-drag ratio
of the basic configuration were obtained as a result of reductions in base drag
assoclated with the blunt-base vertical tails. This reduction in base drag was
accomplished by either boattailing the aft sections of the tails to approxi-
mately a zero base thickness, or altering the section shapes to give the same
result. These changes caused only minor effects on either the lift or the
pitching-moment characteristics of the basic configuration. Further improve-
ments 1n performance were obtained by use of splitter plates (flat-plate base
extensions) located at various positions in the body base regions between the
circular center section (considered an egress hatch area) and the outboard
vertical tails. The largest improvements in performance resulted from a change
in the body upper surface contour which reduced the volume near the region of
the elevon controls and reduced the base area by approximately one-half.

INTRODUCTION

Manned lifting entry vehicles possessing the capability of conventional
horizontal landings have been the subject of considerable research throughout
the National Aeronautics and Space Administration. Several configurations
which appear suitable for this type of mission requirement have been tested
over a range of Mach numbers from low subsonic to hypersonic. (See refs. 1
to 10.) The desirability of providing some 1lift and lift-drag ratio at hyper-
sonic speeds is apparent from range and maneuverability considerations (as
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noted in refs. 11 to 13). However, in order to alLevig%é some of the problems
associated with reentry heating, vehicle design requirements result in compact-
volume, highly swept, low-span configurations having blunted base areas. Each
of these design characteristics is undesirable for low subsonic speeds because
the low values of 1ift and 1lift-drag ratio generated result in marginal landing
capabilities. The question arises, therefore, of how to improve the subsonic
performance characteristics without resorting to the complexities of extendable
wings or lifting surfaces.

The present investigation was initiated to examine various methods of
improving the vehicle performance at low subsonic speeds without penalizing
the salient configuration design points. The configuration selected for study
is the vehicle of references 1 to 5, designated HL-10 (horizontal lander 10).
The various changes which are presented should be applicable to any generalized
hypersonic configuration similar in design to this type of lifting-body vehicle.
The major portion of the investigation dealt with possible methods of reducing
base area or alleviating base drag in areas which would be unaffected at reentry
conditions or at hypersonic speeds. All tests were made at a Mach number of
0.35, corresponding to an average test Reynolds number based on the body length
of 5.73 X 106. The angle of attack varied from approximately -5° to 23° at a
sideslip angle of 0°,

SYMBOLS

All data are referred to the stability axis system, with all coefficients
nondimensionalized with respect to the actual length, span, and projected plan-
form area of the body. The reference center of moments was located at 53 per-
cent of the body length aft of the nose, and at 1.25 percent of the body length
below the body reference line. (See fig. 1(a).)

b span, 19.68 in. (50.00 cm)
c chord, in. (cm)
Cy, 1ift coefficient, L_lsfl
q
Cp drag coefficient, 2Lo8
asS
Cm pitching-moment coefficient, Pitching moment
qS?
1 body length, 30.54 in. (77.57 cm)
L/D lift-drag ratio
q dynamic pressure, 1b/ft2 (N/me)
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S body planform area, 2.31 £t2 (0.2145 m2)
a angle of attack, deg
Bg splitter plate deflection (referred to body reference line), positive

when trailing edge down, deg

Subscripts:

2 lower surface
min minimum condition
max maximum conditién
u upper surface

MODEL

Model Component Designations

Design criteria for the HL-10 configuration and basic-body section details
are presented in references 1 to 5 and 9 and 10. A drawing of the basic con-
figuration of the present investigation is presented in figure 1(a). A photo-
graph of the HL-10 configuration is presented in figure 2.

The body modifications are identified as follows (see fig. 1(b)):

Bo original HL-10 body

B large added volume to top of body

Bo small added volume to top of body

Bz reduced volume from top of original body

Modifications of the center-line vertical tail are identified as follows
(see fig. 1(d)):

Vil basic HL-10 wedge tail (designated Ep, ref. 9)

Vi2 NACA 65-006 airfoil section

Vi3 basic HL-10 tail faired from approximately 25 percent chord to a
near zero thickness at trailing edge

Vib basic HL-10 wedge tail with boattailed rudder

Modifications of the outboard vertical tail are identified as follows
(see fig. 1(e)):

V0 basic HL-10 outboard tails (designated Iy, ref. 9)
Vol slab-sided, or flat-plate outboard tails

Vo2 cambered inner side of basic outboard tails

Vo3 cambered inner and outer sides of outboard tails
Vo0'  basic HL-10 tail with boattailed outer surface

AR 3
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Body Modifications

Three body changes have been tested in which the body upper surface has
been altered from the original By. In the first modification, the upper por-
tion of the body volume was irzreased by filling in the base of the model and
adhering to the top surface lateral contours where possible. (See fig. 1(b),
body Bl.) The contours were formed by straight-line or ray extensions from
bedy station 12.58 to the body trailing edge. The resultant base area, in
the region between the outboard tails and the circular chamber, was approx-
imately doubled. Body Bp was formed by reducing body By by half the added

base height, as shown in figure l(b). Body B3 was obtained by lowering the

upper surface contour from body station 12.58 to the twxailing edge; this
change resulted in a considerable reduction in base thickness. The major
reduction in volume for body B3 occurred in the region of the elevons, where
the volume appears to be unusable.

Body Base Modifications

Various methods of reducing the body base drag by means of closing the
base flow have been investigated. These methods include attaching splitter
plates to the top, middle, and top and bottom of the body base; adding wedges
to close the base entirely; and fairing the lower surface in the region of the
original elevon. Details of each of these base modifications are presented in
figure 1{c).

Vertical Tail Modifications

Modifications of the basic center-line vertical tail Vil are shown in

figure l(d). These alterations included: replacing the basic tail with the
NACA 65-006 airfoil section having a closed base (designated Vi2); fairing the
basic tail from approximately 25 percent chord to near zero thickness at the
trailing edge (designated V;3); and boattailing only the rudder section of the
basic tail (designated Vi4). Modifications of the basic outboard vertical tails
Vo0, as shown in figure l(e),included: changing the tail sections to flat
plates or slab sections (designated Vol); cambering the basic inboard surfaces
of the tails (designated V,2); and cambering both the inboard and outboard sur-
faces of the tails (designated Vo3). The basic vertical tails Vo0 with only
the outboard surfaces faired (designated Vo0') were also tested. The fairing
starte? ?t)approximately 25, 50, and 80 percent of streamwise tail chord. (see
fig. 1(e).

TEST AND CORRECTIONS

The present investigation was made in the Langley high-speed 7- by 1l0-foot
tunnel at a Mach number of 0.35, corresponding to an average test Reynolds

number based on body length of 5.73 X 106. The model was sting mounted, and




forces and moments were measured by means of a six-component strain-gage bal-
ance. The angle of attack ranged from approximately -5° to 23° at a sideslip
angle of 0°.

Jet-boundary and solid-blockage corrections, determined by the methods
described in references 14 and 15, respectively, have been applied to the data.

The angles of attack have been corrected for the effects of sting and balance
bending under load.

All drag data of this investigation represent gross drag, and have not been
corrected to a free-stream static condition in the blunted-base region.

PRESENTATION OF RESULTS

The results of this investigation are presented in the following figures:

Figure

Effects of changing center-line vertical-tail geometry.

Configuration BgVpO. . . . . e e e e e e e e e 3
Effects of changing outboard vertlcal tall geometry

Configuration BoVi2. « « « ¢« + ¢ ¢ v & o o o o o 4 o o 0 e w e e e b
Basic configuration with various combinations of geometric changes.

Configuration Bg. e e e e e e e e e e e e e e e e e e e e e e e e 5
Effects of outboard-tail hinge-line location. Configura-

tion B,V;2V,0'. Bottom elevon surface boattailed. . . . . . . . . . 6
Effects of changing center-line vertical-tail geometry.

Configuration ByVy0'. e e e e e e e e e e e e e e e e e e e e e e 7
Effects of various body-base modifications. Configura—

tion ByVi2Ve0'. e e e e e e . e e e e e e . 8
Effects of addition of vortex generators to upper surface of orlglnal

body By with wedged base. Configuration BgViZ2Vg0'. e e e e e e 9

Effects of addition of splitter plates and vortex generators to origi-
nal body Bo with elevon bottom surface boattailed. Configura-
tion BoVi2V50'. e e e e e e e e e e e e e e e e e e e e e e e e 10
Effects of changing body upper surface contour. Configura-
tion Vi2V50°'. e e e e e e e e e e e e e e e . . . e e e 11
Effects of various combinations of base changes and outboard-tall
rudder-hinge-line locations, with and without vortex generators.
Configuration BaVi2Vo0'. v v v v h e e e e e e e e e e e e e e 12

DISCUSSION

A detailed study of various geometric alterations which may improve the
performance characteristics of lifting body vehicles has been made on the
HI~10 configuration, with results presented in figures 3 to 12. TInasmuch as
the hypersonic reentry characteristics of the configuration are primarily
dependent on the shape of the body lower surface and the outboard-tail outer
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surface, for most of the modifications examined in the present investigation
either these shapes were not altered, or they were altered in such a way that
the original shape could be restored with a movable flap.

The effects of changing the geometry of the center-line and outboard tails
are presented in figures 3, 4, 6, and 7. Changing the center-line vertical
tail from a wedged section to an NACA 65-006 airfoil (Vi2) (fig. 3) produces
large reductions in (CD)min and the drag throughout the angle-of-attack range
investigated, with only minor effects on either the 1lift or the pitching-moment
characteristics. Thus an increase in (L/D)pax from approximately 3.9 to 4.k

results. This tail-geometry change appears feasible from reentry aerodynamic
heating considerations, since the envisioned entry occurs at a high angle of
attack and thus this center tail is well shielded. Approximately the same
results are obtained with the basic center-line tail faired to a near zeroc base
thickness from approximately 25 percent chord (Vi3, fig. 7). Similar but lower
increases in performance are also obtained by boattailing only the rudder sec-
tion of the basic center tail (compare Vil and Vi4 having VoO' hinge line at
50 percent chord and body lower surface boattailed). This sharp rudder boat-
tailing, however, may result in considerable reduction in rudder effectiveness
because of separation induced by the wedge shape ahead of the sharply boat-
tailed rudder.

The effects of changing the geometry of the outboard vertical tails are
presented in figure 4. Although the effects of modifying the tail cross section
on the overall aerodynamic characteristics are significant, the most notable
gains in performance result from boattalling the outer surface of the original
tail. This tail change also resulted in the least out-of-trim moment in the
region of (L/D)p,yx- Therefore, less trim-drag penalty and less loss in
(L/D)pax due to trim may be expected. Some nonlinearities in the variation of
Cp with Cp in the range of Cy from about 0.1 to 0.3 were noted for the

tail V,0' with the hinge line at 25-percent tail chord. The effects of
outboard-tail hinge-line location for the outer edge boattailing are presented
in figure 6 for configuration ByVi2Vo0' having the bottom elevon surface boat-

tailed. Some reduction in the value of (L/D)pax occurs as the hinge line is

shifted aft (maintaining constant base area), but less out-of-trim moment was
also noted.

A comparison of the effects of vertical-tail changes in combination with
the original body By with and without vortex generators and boattailed elevons

is presented in figure 5. A comparison of the performance characteristics for
the basic configuration ByVilVoO and the modified configuration BgV;2Vo0',

having boattailed elevons on the lower surface and vortex generators, indicates
that these modifications increased the value of (L/D)p,, from approximately

3.9 to 6.2, with a resultant reduction in the out-of-trim moment at (L/D)max
from approximately -0.042 to -0.026.

Inasmuch as the largest portion of base area which may be altered occurs

between the circular center section (considered an egress hatch area) and the
outboard tails, several methods of base-drag reduction have been attempted, with
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results presented in figures 8 to 10. The addition of a wedge to this base
region indicates the most notable gains in performance ((L/D)max ~ 6.35,

fig. 8), as might be expected, because the wedge closes the base region entirely.
Deflection of the elevon region of the body with the wedges on for longitudinal
trim, however, may be expected to induce separation earlier than with the wedges
off, and nonlinearities in pitch due to the excessive angles the wedges make
with the body reference line would result.

The addition of vortex generators to the body upper surface for the config-
uration BgVi2Vo0' having wedges on further increased the maximum lift-drag ratio

from L/D =~ 6.35 to L/D~ 6.8 and improved the variation of Cp with Cy,
below Cy, = 0.50. (See fig. 9.) The location of these generators (see

fig. 1(a)) was selected after observing tuft studies of the model, and since the
flow is critical to changes in Reynolds number, the improvements noted for these
particular generators may be applicable only at low Reynolds numbers. However,
vortex generators used on the full-scale vehicle may be beneficial if they are
located in a position to alter the full-scale flow characteristics.

The longitudinal characteristics associated with the addition of splitter
plates and vortex generators to the configuration having the bottom elevon sur-
face boattailed are presented in figure 10. The addition of vortex generators
and a splitter plate to the top of the base gives a value of (L/D)y,, of

approximately T7.1l. Increasing the boattail angle on the elevon bottom surface
while keeping the upper surface fixed should produce trim at positive 1lift
coefficients.

The effects of changing the body upper surface contour for the configura-
tion having the airfoil-section center-line tail (Vi2) and the basic outboard

tail boattailed from 25 percent chord (VOO‘) are presénted in figure 11. It is
interesting to note that increasing the base area of bodies B; and Bs (which

results in less upper surface change in slope near the base region) results in
large increases in minimum drag, but it also shows less out-of-trim moment at
C;, corresponding to (L/D)p., than the original body Bo. The largest

increases in (L/D)p,., however, are noted for body Bz, for which the volume

near the region of the elevon controls was reduced and the base area was
reduced by approximately one-half. Body B; also shows the lowest value of mini-

mum drag and the least out-of-trim moment at Cp, corresponding to (L/D)max-
Body Bz also has less change in upper surface slope in the region of the base
than the original body Bo. The changes noted in the variation of Cp with Cg,
result primarily from changing the camber of the configuration.

The effects of elevon bottom-surface boattailing and various locations of
the outboard-tail rudder hinge line in combination with the small body Bz are

presented in figure 12. Trimmed values of (L/D)max are greater than 6.0.

The configuration B5V12V00': having outboard-tail hinge-line location at
50 percent chord and a boattailed elevon, appears to be the most promising

UNCLASSIFI=N
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configuration investigated. A comparison made between this configuration
(fig. 12) and the original body with the same modifications BgVi2VpO' (fig. 5)
indicates that, whereas the values of (L/D)maX are approximately the same, the

configuration B,V;2V,0' is approximately -0.025Cp out of trim, and, as previously
noted, the configuration BzV;2V,0' is trimmed at (L/D)p,y-

CONCLUDING REMARKS

An investigation has been made in the Langley high-speed 7- by 10-foot tun-
nel at a Mach number of 0.3%5 to examine various methods of improving the landing
performance characteristics of blunted-base lifting-body configurations. The
model selected for the study was the HL-10 configuration, considered represent-
ative of the aforementioned type of vehicle. Most of the modifications incor-
porated were made bearing in mind that little or no alteration of the pertinent
entry-configuration design lines should be attempted.

In general, significant increases in the maximum untrimmed lift-drag ratio
of the basic configuration were obtained as a result of reductions in base drag
associated with the blunt-base vertical tails. This reduction in base drag was
accomplished by either boattailing the aft sections of the tails to approxi-
mately a zero base thickness, or altering the section shapes to give the same
result. These changes caused only minor effects on either the 1lift or the
pitching-moment characteristics of the basic configuration. Further improve-
ments in performance were obtained by use of splitter plates (flat-plate base
extensions) located at various positions in the body base regions between the
circular center section (considered an egress hatch area) and the outboard
vertical tails. The largest improvements in performance resulted from a change
in the body upper surface contour which reduced the volume near the region of
the elevon controls and reduced the base area by approximately one-half.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., July 8, 1965.
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Figure 3.- Concluded.
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"“The aevonautical and space aclivities of ibe United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and he results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grantand released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but pot necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546
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